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DEFORMATION MODEL FOR BRITTLE MATERIALS

AND THE STRUCTURE OF FAILURE WAVES

UDC 539.3E. I. Romenskii

Constitutive equations that describe the experimentally observed failure waves are proposed to model
inelastic strains of brittle materials. The complete system of equations is hyperbolic, each equation
of this system has divergent form. The model is based on the assumption that continual failure is
the process of transition from an intact state to a “fully damaged” state described by the kinetics
of the order parameter. The structure of stationary traveling compressive waves is analyzed using a
simplified model. It is shown that in a certain range of amplitudes, the wave splits into an elastic
precursor and a failure wave.
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In the present paper, constitutive equations for modeling inelastic strains of brittle materials are proposed
that can be used to describe the so-called failure waves. The fracture of a brittle material under compressive stresses
is characterized by the formation of numerous cracks and has a wave nature [1, 2]. Theoretical investigation of the
fracture waves is in its infancy [3, 4], and no adequate mathematical model has been proposed for a qualitative
analysis and numerical study of the processes mentioned above. In the present paper, constitutive differential
equations based on the nonlinear theory of inelastic strains [5] are formulated in the form of a hyperbolic system
in which each equation has divergent form. Moreover, the model proposed satisfy the laws of nonequilibrium
thermodynamics. Models of this type allow the use of well-developed mathematical and effective numerical methods
of solving various problems.

The model proposed is based on the assumption that an element of a material subjected to continual failure
undergoes a transition from an intact state to a “fully damaged” state, which can be characterized by elastic
moduli different from those of the intact material. This transition is described by an equation for the order
parameter with nonlinear kinetics. Moreover, the model takes into account the inelastic deformation of the material
that accompanies continual failure. A similar small-strain model and numerical analyses of some problems in good
agreement with experimental data [1] were proposed in [3].

In the present paper, the structure of stationary traveling compressive waves is analyzed using a simplified
model of continual failure. The investigation technique is similar to the analysis of the shock-wave structure in
a medium with relaxation given in [6] and to the method of studying elastoplastic waves in a Maxwell nonlinear
medium [5]. In a certain range of amplitudes, the wave splits into an elastic precursor and a failure wave itself,
which agrees with the experimentally observed wave structure.

1. Complete System of Constitutive Equations. Following [5], we consider the velocity vector ui

(i = 1, 2, 3), the elastic deformation gradient cij (the elastic distortion tensor [5]), the reference density ρ0 (the
density corresponding to an element of the medium reduced to the state of zero stress field), and the entropy S as
the parameters characterizing the state of the medium. As a measure of damage to an element, we introduce the
order parameter ξ ∈ [0, 1].
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In Cartesian coordinates xi, the complete system of constitutive equations comprises the conservation laws
for the momentum, mass, and the elastic distortion tensor, the balance equation for the order parameter, and the
energy conservation law:

∂ρui

∂t
+
∂ (ρuiuk − σik)

∂xk
= 0,

∂ρ

∂t
+
∂ρuk

∂xk
= 0,

∂ρcij
∂t

+
∂ (ρciju

k − ρckju
i)

∂xk
= −(uiβj + ϕi

j),
∂ρξ

∂t
+
∂ρukξ

∂xk
= −ψ, (1)

∂ρ(E + uiu
i/2)

∂t
+
∂ (ρu(E + uiu

i/2) − uiσk
i )

∂xk
= 0.

In addition to the parameters of state of the medium, the following quantities are used in system (1):
ρ = ρ0/ det (cij) is the density and σi

j = −2ρcin ∂E/∂cnj is the stress tensor. The specific internal energy E is the
closing relation, which should be specified as a function of the parameters of state of the medium (reference density,
distortion tensor, order parameter, and entropy):

E = E(ρ0, c
1
1, c

1
2, . . . , c

3
3, ξ, S).

The right sides ψ and uiβj +ϕi
j in the equations for ξ and cij describe the failure kinetics and inelastic strains.

The term uiβj contains the variables βj in which the equations for elastic distortions are written in divergent form.
These auxiliary variables should satisfy the additional laws of conservation [5] implied by system (1):

∂ρcij
∂xi

= βj ,
∂βj

∂t
+
∂ (uiβj + ϕi

j)
∂xi

= 0, (2)

The variables βj can be eliminated from system (1), but in this case the equation for the distortion tensor cij loses
divergent form:

∂ρcij
∂t

+
∂ρciju

k

∂xk
− ρckj

∂ui

∂xk
= −ϕi

j .

An analysis of the equations of the nonlinear Maxwell model of inelastic deformations [5] shows that the
characteristics of the system of differential equations are real and, hence, the system is hyperbolic.

It should be noted that the processes governed by Eqs. (1) satisfy the second law of thermodynamics — the
law of increasing entropy:

∂ρS

∂t
+
∂ρSuα

∂xα
= Q =

Eci
j
ϕi

j + Eξξ

ES
.

The model constructed is thermodynamically correct provided the production of entropy Q is nonnegative. This
condition imposes a constraint on the choice of the functions governing the kinetics of the order parameter and
inelastic strains:

Eci
j
ϕi

j + Eξξ � 0.

Thus, the general equations for modeling the processes of continual failure were formulated above. These
equations agree with the laws of thermodynamics, are hyperbolic, and have divergent form. To model the real
processes for a specific material, it is necessary to specify the dependence of the internal energy on the parameters
of the medium (the equation of state) and the kinetics of inelastic strains and continual failure ϕi

j and ψ, which
depend on the parameters of state.

2. Simplified Model of Continual Failure for One-Dimensional Processes and Stationary Trav-
eling Waves. To show the applicability of the model constructed above to the description of continual failure,
we formulate simplified one-dimensional equations and, by analyzing stationary traveling waves, verify that for
appropriately chosen closing relations, the model provides a qualitative description of the experimentally observed
features of the failure waves.

We consider one-dimensional waves that propagate along the axis x1 = x at a velocity u1 = u assuming that
the other components of the velocity vector vanish: u2 = u3 = 0. In this case, the stress tensor has diagonal form:
σij = σiδij (σi are the principal stresses). As the strain measure in the one-dimensional case, we use the Hencky
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logarithmic tensor, which is related to the distortion tensor [5]: (hij) = ln (cki c
k
j ). In the one-dimensional case, the

Hencky tensor also has diagonal form: hij = hiδij . By virtue of the isotropy of the medium, the stresses and elastic
strains in the direction normal to the x-axis are uniform, i.e., σ2 = σ3 and h2 = h3. In this case, the density is
related to the Hencky elastic deformation tensor by the formula

ρ = ρ0 exp (−h1 − 2h2), (3)

where ρ0 = const is the density of the material in the initial undeformed state. Next, we assume that the reference
density ρ0 remains unchanged, i.e., inelastic change in the volume does not occur. Under this assumption, the
simplified system of constitutive equations (1) becomes

∂ρ

∂t
+
∂ρu

∂x
= 0,

∂ρu

∂t
+
∂ (ρu2 − σ1)

∂x
= 0,

∂ρh2

∂t
+
∂ρuh2

∂x
= −ϕ, ∂ρξ

∂t
+
∂ρuξ

∂x
= −ψ, (4)

∂ρ(E + u2/2)
∂t

+
∂ (ρu(E + u2/2) − uσ1)

∂x
= 0.

In this case, we do not need to introduce the auxiliary variable βj in accordance with formulas (2) since the
one-dimensional equations have divergent form. System (4) implies the entropy balance equation

∂ρS

∂t
+
∂ρSu

∂x
= Q =

2(Eh2 − Eh1)ϕ+ Eξψ

ES
. (5)

The low of increasing entropy is satisfied with an appropriate choice of the functions ϕ and ψ that model the kinetics
of inelastic strains and the order parameter.

To close system (4) for one-dimensional wave processes, it is necessary to determine three relations: the
equation of state E = E(ρ0, c

1
1, c

1
2, . . . , c

3
3, ξ, S) and the functions ϕ and ψ. The available experimental data are very

limited, and additional assumptions are required to determine the closing relations mentioned above. Below, we
formulate a simpler model that could be the basis for the further generalization. Ignoring the temperature effects
and inelastic strains that accompany continual failure, we obtain an even simpler model for one-dimensional wave
processes with the constitutive equations given by

∂ρ

∂t
+
∂ρu

∂x
= 0,

∂ρu

∂t
+
∂ (ρu2 − σ1)

∂x
= 0,

∂ρh2

∂t
+
∂ρuh2

∂x
= 0,

∂ρξ

∂t
+
∂ρuξ

∂x
= −ψ.

(6)

System (6) consists of four differential equations in divergent form for four unknowns u, h1, h2, and ξ.
The stress tensor (its principal values) is given by

σi = ρ
∂E

∂hi
, (7)

where the internal energy E = E(h1, h2, ξ) depends on the Hencky parameters h1 and h2 and the order parameter ξ
and the density is calculated by formula (3). It should be noted that to calculate stresses by formula (7), one should
use the relation for the internal energy E = E(h1, h2, h3, ξ) and set h2 = h3 only after differentiation.

We next study particular solutions of system (6) in the form of stationary traveling waves. Solutions of this
type are determined by the spatial variable x ∈ (−∞,+∞) in an infinite interval, are bounded as x → ±∞, and
depend only on one variable L = x−Dt (D = const is the velocity of the stationary traveling wave). We consider
the solutions for D > 0, i.e., the wave propagation in the x direction. Solutions of this type can be found from the
system of ordinary differential equations that follows from (6) if the solution is sought in the form

h1 = h1(L), h2 = h2(L), u = u(L), ξ = ξ(L).

Substitution of the above-mentioned functions into system (6) yields the following system of ordinary differ-
ential equations for the stationary traveling wave:
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dρ(u −D)
dL

= 0,
d (ρu(u−D) − σ1)

dL
= 0,

dρ(u−D)h2

dL
= 0,

dρ(u−D)ξ
dL

= −ψ.
(8)

The first three equations of system (8) can be integrated and reduced to three algebraic equations — relations at
the discontinuity. As a result, the system becomes

[ρ(u −D)] = 0, [ρu(u−D) − σ1] = 0,

[ρ(u−D)h2] = 0,
dρ(u−D)ξ

dL
= −ψ. (9)

Here [F ] = F − F0 is the discontinuity in F and F0 and F are the values ahead of the wave (L = +∞) and behind
it (L = −∞), respectively. The last ordinary differential equation of system (9) determines the wave structure in
the interval −∞ < x < +∞.

3. Choice of Closing Relations. To study the failure waves in specific materials, we use the closing
relations for system (6): the right side in the equation for ξ, which describes the kinetics of the order parameter,
and the equation of state (the specific internal energy E).

We first determine the function ψ subject to the constraints that the function should: 1) ensure positive
entropy production in Eq. (5); 2) vanish for ξ = 0 and ξ = 1. The function ψ = ψ0(1−ξ)Eξ satisfies the condition of
nonnegative entropy production as ψEξ � 0 and vanishes for ξ = 1. Under the assumption that Eξ = 0 for an intact
stress-free material (below, this assumption is shown to be valid), the function ψ chosen in this manner satisfies the
necessary requirements. We note that ψ0 can depend on the parameters of state of the material (stresses and ξ).

We choose the equation of state based on the above statement that the process of continual failure is modeled
by transition of the initial intact phase (ξ = 0) to a “fully damaged” phase (ξ = 1). In an intermediate state, an
element of the medium can be treated as a mixture of components of the intact and “fully damaged” materials.
According to [3], the order parameter ξ can be identified with the volume concentration of the “fully damaged”
material in the mixture.

In [3], a procedure is proposed to derive the equation of state of the mixture for known equations of state
of the intact and “fully damaged” materials. This procedure is based on the hypothesis that the specific internal
energy of the mixture E is the average over the mass concentration of the specific internal energies E1 and E2 of
the intact and “fully damaged” materials, respectively:

ρE = ξρ2E2 + (1 − ξ)ρ1E1

[ρ = ξρ2 + (1 − ξ)ρ1 is the density of the mixture]. To express the parameters of state of the mixture in terms
of the parameters of state of the components, we use additional hypotheses. Assuming that the stress field in an
element of the mixture is in equilibrium (i.e., the stresses in the elastic intact and “fully damaged” components are
equal) [3] and that the elastic strain of the mixture is the average of the volume concentration of the elastic strains
of the intact and fully damaged materials, one can obtain a closed-form dependence of the internal energy on the
elastic strain of the mixture and the order parameter. In the case where the internal energy of the intact and “fully
damaged” materials is described by Hooke’s law, the averaging procedure leads to the following equation of state
for the mixture [3]:

E(h1, h2, h3, ξ) =
λ(ξ)
2ρ0

(h1 + h2 + h3)2 +
μ(ξ)
ρ0

(h2
1 + h2

2 + h2
3). (10)

The moduli of the damaged material are given by the formulas

λ =
K1K2

K̃
− 2

3
μ1μ2

μ̃
, μ =

μ1μ2

μ̃
, (11)

K̃ = ξK1 + (1 − ξ)K2, μ̃ = ξμ1 + (1 − ξ)μ2, K2 = λ2 + (2/3)μ2, K1 = λ1 + (2/3)μ1.

We have λ = λ1 and μ = μ1 for ξ = 0 (intact material) and λ = λ2 and μ = μ2 for ξ = 1 (fully damaged material).
Below, we show that the equation of state (10) can be used for a qualitative description of failure-wave

propagation.
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4. Equations for Describing the Structure of a Failure Wave Propagating in a Stress-Free
Material. We construct a solution of system (9) that describes the structure of a failure wave propagating in a
stress-free material. Since solution of (9) is bounded as L = ±∞, the derivatives of all unknown functions with
respect to the variable L vanish as L = ±∞. Let u0, ρ0, h0

2, and ξ0 be known parameters of state ahead of the
wave (ξ = +∞). Then, system (9) becomes

ρ(u −D) = ρ0(u0 −D) = m, ρu(u−D) − σ1 = ρ0u0(u0 −D) − σ0
1 ,

ρ(u −D)h2 = ρ0(u0 −D)h0
2,

dρ(u−D)ξ
dL

= −ψ,
where m is the mass flux through the wave.

We study the wave propagating in a stress-free immovable material (u0 = 0) and intact material (ξ0 = 0),
in which the elastic strain in the direction normal to the x axis vanishes (h0

2 = 0). In this case, the third equation
of this system implies that h2 = 0. Then, the strain along the x axis can be written as a function of density:
h1 = ln ρ0/ρ.

Using the definition of the mass flux through the wave m and introducing the notation U = u−D, we finally
obtain the system for studying the structure of the stationary traveling wave:

ρU = ρ0U0 = m,
m2

ρ
− σ1(ρ, ξ) =

m2

ρ0
− σ0

1 , m
dξ

dL
= −ψ. (12)

System (12) contains three equations for the four unknowns ξ, ρ, U , and m. To solve this system, it is necessary to
specify the quantity m or another parameter of state behind the wave (as L = −∞). This system, however, is not
always solvable; its solvability conditions are given below.

The problem of the structure of the failure wave is solved in two stages. We first find the parameters of state
behind the wave and then construct a solution that joins the states ahead of the wave (L = +∞) and behind it.

We assume that the stress behind the wave (L = −∞) is known: σ1 = −P . Provided the solution is
bounded as L → −∞, we find the other parameters of state behind the wave. The boundedness condition implies
that dξ/dL = 0 for L = −∞. As a result, we obtain the system of algebraic equations for determining the mass
flux through the wave m, the density ρ, and the order parameter ξ behind the wave:

m2/ρ+ P = m2/ρ0 − σ0
1 , ψ = χEξ = 0, σ1(ρ, ξ) = −P.

Assuming that the right side ψ in the equation for ξ vanishes for ξ = 1, we arrive at the system for
determining m and ρ behind the wave:

m2/ρ+ P = m2/ρ0 − σ0
1 , σ1(ρ, 1) = −P. (13)

Provided the equation of state is convex, we obtain unique values of m and ρ for each specified value of P . It
is therefore possible to plot a curve P (V ) in the plane (P, V ) (V = 1/ρ is the specific volume), which we call
the Hugoniot adiabat of the “fully damaged” material. We note that solution of system (13) exists for m2 >

(∂σ1/∂V )
∣
∣
∣
ρ=ρ0, ξ=1

. From this condition, it follows that the failure-wave propagation velocity in the fully failed

material is higher than the sound velocity.
We determine the elastic shock and Hugoniot adiabat of the elastic material. Since the wave propagates over

the stress-free intact material (ξ = 0), the system admits a discontinuous solution for which ξ = 0 everywhere for
L ∈ (−∞,+∞) and the remaining parameters are determined from the conditions at the discontinuity

ρU = ρ0U0 = m, m2/ρ− σ1(ρ, 0) = m2/ρ− σ0
1 .

Assuming that the stress σ1 = −P is specified behind the wave (discontinuity), for each value of P we find the mass
flux through the discontinuity m and the density behind the discontinuity ρ from the system

m2/ρ+ P = m2/ρ− σ0
1 , σ1(ρ, 0) = −P. (14)

Then, we construct the curve P (V ), which we call the Hugoniot adiabat of the elastic material. The elastic shock as
the solution of system (13) exists for m2 > (∂σ1/∂V )

∣
∣
∣
ρ=ρ0, ξ=0

. From this condition, it follows that the failure-wave

propagation velocity in the elastic intact material is higher than the sound velocity.
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Fig. 1. Moduli λ and μ versus the order parameter ξ.

Fig. 2. Hugoniot adiabats for elastic intact material (1) and “fully damaged” material (2):
point A refers to the elastic shock and segment AB refers to the continuous failure wave.

Continuous portions of the solution of the wave structure are obtained by integrating the system

dL

dξ
= −m

ψ
,

m2

ρ
− σ1(ρ, ξ) =

m2

ρ0
− σ0

1 . (15)

Since the order parameter ξ varies in the range from 0 to 1, the coordinate L can be found using system (15).
5. Example of Solving the Problem of the Structure of the Failure Wave. As the material,

we choose borosilicate glass (PYREX) with the following parameters of the intact (fully damaged) materials:
λ1 = 38.9 GPa (λ2 = 36.3 GPa), μ1 = 16.2 GPa (μ2 = 12.5 GPa), and ρ1 = ρ2 = 2230 kg/m3.

Since the set of constants of the intact material given in [1] contains only the density and propagation velocity
of the longitudinal sound waves, we choose λ1 and μ1 in such a manner that the value of (λ1 + 2μ1)/ρ1 is equal to
the squared sound velocity of the longitudinal waves in the intact material (5560 m/sec). We further assume that
the density of the material remains unchanged in the stress-free state. The choice of the sound velocities in the
“fully damaged” material is of hypothetical character and motivated by the necessity of obtaining closer agreement
with experimental data on shock-wave loading.

Figure 1 shows the moduli λ and μ versus the order parameter ξ. One can see that dependence (11) is
nonlinear, but it is almost linear for the chosen values of the moduli of the damaged material.

Figure 2 shows the Hugoniot curves for the intact and “fully damaged” materials for the waves propagating
in the stress-free immovable material (ρ0 = 2230 kg/m3 and u0 = 0 ahead of the wave). One can see that the
Hugoniot curve for the damaged material lies below that for the intact material. Thus, each “typical” failure wave
can be related to the segment OAB which intersects the Hugoniot curves at the points corresponding to the elastic
shock (point A) and the continuous failure wave (segment AB). In addition to the solutions composed of the elastic
shock accompanied by the wave of transition from the intact to failed material, there can exist continuous solutions
in the form of only the transition wave. Waves of this type exist for ∂P2/∂V < m2 < ∂P1/∂V (P2 and P1 are the
Hugoniot curves for the fully failed and intact materials, respectively).
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Fig. 3. Distributions of the stresses σ1 (a) and the order parameter ξ (b) for various failure waves:
curve 1 refers to D = 5585 m/sec, u = 311 m/sec, σ1 = 3.88 GPa, and ρ = 2362 kg/m3, curve 2
refers to D = 5593 m/sec, u = 322 m/sec, σ1 = 5.16 GPa, and ρ = 2366 kg/m3, and curve 3 refers
to D = 5659 m/sec, u = 409 m/sec, σ1 = 5.16 GPa, and ρ = 2404 kg/m3.

We give the solution of the problem of the wave structure for a certain function ψ describing the kinetics
of the order parameter, which was chosen such that the predicted wave parameters were close to the experimental
data of [1]. The solution constructed is based on the kinetics

∂ξ

∂t
+ u

∂ξ

∂x
= −1

ρ
ψ,

where ψ = (1−ξ)ψ0Eξ, ψ0 = Kρ(|σ|/σ0)α, |σ| = |σ1−σ2| for the one-dimensional strains considered, σ0 = 0.45 GPa,
K = 2 · 104 sec/m2, and α = 0.5.

Figure 3a shows the distribution of the stress σ1 for three different failure waves propagating in an immovable
stress-free elastic material (u0 = 0, ρ = ρ0, and ξ0 = 0 ahead of the wave). One can see that in all three cases
the wave consists of an elastic precursor followed by a smooth failure wave. The characteristic thickness of the
transition zone from the intact to fully damaged state is fractions of a centimeter, and it decreases with increasing
amplitude. If the wave amplitude is large enough, the elastic precursor and transition zone merge and the failure
wave looks like one wave. The order-parameter profiles for these waves are shown in Fig. 3b. One can see that
0 � ξ � 1 and the rate of variation of ξ increases with the wave amplitude. We note that curve 3 is close to the
experimental curve of [1]. However, the model considered above ignores the inelastic strain occurring in the process
of brittle failure and the plastic strain of the fully failed material. Accounting for these factors will provide a more
accurate description of experimental data.

The author is grateful to M. A. Grinfeld for useful discussions of the problem considered.
This work was supported by the Grant Assistance Program of the U.S. Civilian Research and Development
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